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ABSTRACT 

Aldol reaction of 1,2-~-isopropylidene-5-~-tertbutyl-dimethylsilyl- 
a-D-erythro-pentofuranos-3-ulose (1) with acetone in the presence of 
aqueous K C03 afforded 3-~-acetonyl-1,2-~-isopropylidene-5-~-tertbutyl- 
dimethylsityl- a-D-ribofuranose(2). Similar reaction of 1 , 2: 5,6-di-g-iso- 
propylidene- a-D-~-hexofuranos-3-ulose (3) afforded 3-2-acetonyl- 
1,2:5,6-di-~-isopropylidene-a-D-allofuranoae (4) and (lg, 3lt, 7It, 85, 
l0~)-perhydro-8-hydroxy-5,5,10-trimethyl-2,4,6,11,14-pentaoxatetracyclo 
[8,3,1,01~8,03~7] tetradeca e. The stereochemistry of the new chiral 
centers were determined by B NOE experiments. 9 

INTRODUCTION 

Branched-chain sugars are widely spread naturally 
occurring products. 9 They are also useful chiral synthons 
for the total synthesis of other naturally occurring non 
carbohydrate compounds. 3 9 4  Some of the most used methods for 
the formation of new C-C bonds at the branching point take 
advantage of the reactivity of the carbonyl group of uloses. 
For example, the addition of dia~omethane,~ the wittig 
reaction,' and the addition of carbon nucleophiles, such as, 
organometallic reagents (Mg,' Li,8 Zn,9 Silo>, hydrogen 
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cyanide,l' and nitromethane, received considerable 
attention. However , the aldol reactionll' has been little 
studied. The scarce reports include the reaction of 
formaldehyde with reducing sugars to give 2-C-hydroxymethyl 
 carbohydrate^'^ and the reaction of malonic-type enolates 

16 with the keto group of uloses. 

Here we report the stereoselective synthesis of 3-C- 
branched furanoses by aldol reaction of furanos-3-uloses with 
acetone. 

RESULTS AND DISCUSSION 

Reaction of l.,2-~-isopropylidene-5-O-tert-butyldimethyl- 
silyl- a-D-erythro-pentof~ranos-3-ulose~~ (1) with refluxing 
acetone in the presence of aqueous K2CO3 afforded the 3-C- 
acetonyl-ribofuranose 2 in 58% yield. The use of other bases, 
such as 1 , 5-diazabicyclo [ 5.4 01 undecene-5 (DBU) , o r  NaOH in 
methanol afforded complex mixtures. The reaction o f  1 with 
other active methylene compounds, such as 2-hutanone) 
acetaldehyde, ethyl acetate, and acetonitrile, in the 
presence of a variety of bases, such as K2C03, DBU and Et3N, 
also afforded complex reaction mixtures. Particularly, the 
reaction of 1 with 2-butanone in the presence of aqueous 
K2CO3 gave a mixture, which could not be separated by 
chromatography, the NMR spectrum of which revealed that it 
contained at least three aldol reaction products. 

A similar reaction of 1,2:5,6-di-O-isopropylidene-a-D- 
- ribo-hexofuranos-3-ulose18 ( 3 )  with acetone and aqueous R2CO3 
afforded the 3-C-acetonyl hexofuranose 4, in 15% yield, and 
the polycyclic derivative 5 ,  in 56% yield. A rapid work up of 
the latter reaction allowed the spectroscopic identification 
of a third, unstable compound 6,  which could not be obtained 
pure. This compound, on standing in solution and during the 
workup was spontaneously transformed into 5 .  Compound 4 is 
not an intermediate for the formation of 5 ,  since treatment 
of  the former under the above mentioned aldol reaction 
conditions did not afford 5 .  

Accordingly a possible pathway to rationalize the 
formation of 5 could be that shown in Scheme 2 .  Removal of 
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CH? 
3'443 

\/? 

the 5,6-0-isopropylidene group followed by aldol reaction 
with acetone would afford 6. Although cyclic acetals are 
easily hydrolyzed under acidic catalysis, l9 9 2o 9 it is known 
that their removal is promoted by the generation of a 
carbanion on the carbon atom adjacent to the dioxolane ring. 
The final products of this process are Y-hydroxy enol 
ethers,lg such as 6. Formation of a carbanion by abstraction 
of the acidic 4-H, 22 followed by intramolecular reaction of 
the 6-CH20H of 6 with the 3-2-acetonyl C=O group would give 
intermediate 7 .  The hemiacetal OH group of the latter would 
react, also intra-molecularly, with the enol ether double 
bond to afford 5 .  Although the transformation 6 --> 7 is 
usually acid catalized, the synthesis of cyclic acetals of 
sugars19 can also be carried out under basic conditions. 

The stereochemistry of the C-3 carbon atom of 2 and 4 was 
inferred from nuclear Overhauser effect ( N O E )  e~perirnents~~ 
(Table 1). Proton H-l'a induced a NOE to H-1 (1.2-4.5%) and 
H-2 (2.7-6.6%), and H-l'b induced a NOE to H-4 (1.3-4.73) and 
H-5(1.1-4.6%). Irradiation of H-l'a and H-l'b did not induce 
a NOE to the isopropylidene Me(endo) group. These data 
suggest that there is a preferred rotamer, such as 8 ,  around 
the C3-C11 bond and that the 3'-C-acetonyl group is trans- 
oriented with respect to the 1,2-0-isopropylidene group. 18 
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r 1 
I 0-c I 

SCHEWE 2 

The structure suggested for 6 is based on spectroscopic 
data. The IR spectrum showed a band at 1650 cm" 
characteristic of vinyl ethers. The lH NMR spectrum showed 
the absence of H-4 and the presence of a triplet at 6 4.97 
ppm, assigned to H-5, and a doublet at 6 4.22, assigned to H- 
6 .  These signals are in agreement with the exocyclic double 
bond. 

H- 1'b 

The IR spectrum of 5 showed the absence of carbonyl and 
olefinic bands. The 'H NMR spectrum of 5 showed the upfield 
chemical shift of the 1'-CH2 and 3'-CH3 signals, with respect 
to the same signals of 6, in agreement with the 

transformation CH3-C-CHz- ---> CH3-C-CH2- undergone by 
the 3-2-branch. The 'H NMR spectrum of 5 also showed the 
absence of H-4 and the presence of an ABXY system, assigned 
to H-5e ( 6 1.91), H-5a ( 62.17), H-6e ( 6 4.00) and H-6a 
( 6 4.38). The magnetic parameters of this ABXY systems are 
in agreement with the indicated structure. 

0 0  
\ /  

0 
II 
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TdBLE 1. TloE value8 for 2 and 4 
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Proton NOES observed at the indicated protons 
Cornpd Irradiated H-1 H-2 H-4 H-5 H-l'a H-l'b CH3 CH3 

(endo) (exo) 

2 H-1 
H- 2 
H- 5 

H-l'b 
H-l'a 

CH3 ( endo) 
CH3 ( ex0 1 

4 H-1 
H- 2 

H-1 ' b 
H-l'a 

CH3 ( endo 
CH3(eXO) 

-88.6 6.1 
6.7 -84 
0.9 
1.2 2.7 

- 1.1 
2.2 4.5 

- 
- - 

-91 6.7 
5.6 -86 
4.5 6.6 

1 - - - 
2.0 3.2 

- - - 0.9 - - - - 
- -89 1.4 4.0 - - -60 15.9 
1.3 1.1 - -59 
4.1 - - - - - - - 

TABLE 2. NOOE values for 5 

NOES observed at the indicated protonsa) 

Irradited H-1 H-2 H-5a H-5e H-6a H-6e H-l'a H-l'b 3'-CH3 

H-1 -82 
H-2 6.2 
H-5a - 
A-5e - 
H-6a - 
H-6e - 
H-l'a - 
H-l'b - 
3 '-CH-j - 

~~ 

4.0 - 
-76 - 

- -63 - 15.4 

- 2.9 
- - 
8.4 - 
1 - - - 

- 
13.5 
-60 - 
1.2 - - 

- 2.1 
3.4 1.0 

-71 17.5 
17.9 -73 

4.0 - 

- 
4.2 - 
- 

.75 - 
1.6 

- 
2.6 - - 

-90 
0.8 

- 
2.5 
0.6 

-95 

a)No NOE was observed at the two isoptopylidene CH3 (endo) and CH3 (exo) 
bands upon irradiation of the indicated protons. The only exception 
was a NOE of 1% observed at the CH3 (exo) band upon irradiation of H-2. 
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The trans orientation of the 3-C-branch of 5 with respect 
to the l,Z-~-isopropylidene group was demostrated by the high 
magnitude of NOE induced to H-2 ( 8 . 4 % )  upon irradiation of H- 

l'a and the absence of NOE induced to the isopropylidene Me 
(endo) group upon irradiation of H-l'a and H-l'b (Table 2 ) .  

The stereochemistry at C-4 of 5 was suggested by the 
facile, spontaneous ketalization, 6--- > 5 ,  which is in 
agreement with the disposition of the 4-0 and 3-2-branch on 
the same side of the furanose ring of 5 .  Furthermore, the 
stereochemistry at C-4 of 5 was demonstrated by NOE 
experiments (Table 2) .  Irradiation of H-l'a induces a NOE to 
H-2 ( 8 . 4 % )  and to 3'-CH3 (2.5%), while irradiation of H - l ' b  

induces a NOE to H-6a ( 4 % ) .  As determined from the 
corresponding molecular models, these values are only 
compatible with the structure shown €or 5 in which the 
dioxane r i n g  is in the chair form. 

In conclusion, the aldol reaction can be a useful 
procedure for the stereoselective synthesis of branched chain 
sugars. In the present case the stereochemistry of the new 
chiral center is controlled by the 1,2-?-isopropylidene 
group, which directs the approach of the acetone from the 
sterically less hindered @-face of the molecule. However, 
under the basic reaction conditions needed other reactions 
may occur, which can afford unexpected products. 

EXPERI23EBTAL 

General Procedures. '€I NMR spectra were recorded with a 
Bruker AM-200 or a Varian EM-390 spectrometers using Me4Si as 
internal standard. Mass spectra were recorded with a Vacuum 
Generators VG 12-250 spectrometer. IR spectra were obtained 
using a Shimadzu IR-435 spectrometer. Optical rotations were 
recorded with a Perkin-Elmer 141 polarimeter. Analytical TLC 
was performed on aluminium sheets coated with a 0.2 mm layer 
of silica gel 60 F254 (Merck), and preparative thin layer 
chromatography was performed on 20 x 20 cm glass plates 
coated with a 2 mm layer of silica gel PF254 (Merck). Flash 
column chromatography was performed with silica gel 60 230- 
400 mesh (Merck). 
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3-C-Acetonyl-l,2-O-isopropylidene-S-tert-butyldimethyl- 
silyl- a-D-ribo-furanoae (2 ) .  
(2g, 6.4 mmol) in acetone (30 mL) K2CO3 (0.83 g) and water (5 
mL) were added. The reaction mixture was boiled under reflux 
for 3 h and then concentrated to dryness under reduced 
pressure. The residue thus obtained was treated with 
chloroform (20 mL) washed with water (3 x 20 mL), and dried 
over anhydrous sodium sulphate. The solvent was evaporated 
and the residue was chromatographed on a Flash-silica gel 
column using ethyl acetate-hexane (1:6) as the eluent to give 
compound (2) (1.38 g, 58%) as a white foam: [a ] ,+  47" (5 1, 
CHC13); IR (film) 3480 (OH), 1710 cm" (ketone C=O); 'H NMR 
(CDCl,, 200 MHz) 60.82 (9, 9H, t-Bu), 1.26 (9,  3H, iso- 
propylidene =-Me), 1.49 (s, 3H, isopropylidene &-Me), 

2.85(d, lH, H-l'b), 3.33 (bs, lH, 3-OH), 3.72 (m, 2H, H-51, 

To a solution of compound l1 

2.16 (9,  3H, CH3CO), 2.30 (d, ZH, Jlia,lib= 15.4 Hz, H-l'a), 

3.82 (dd, lH, H-41, 4.43 (d, lH, J1,2' 4HZ, H-21, 5-69 (d, 
lH, H-1); I /= :  361 (M++ 1, 0.3%), 345 (M+-15, 21, 280 (161, 
245 (M+-tBuMe2Si, 87). 

Anal. Calcd for C17H~~06Si: C, 56.66; H, 8.88. Found: C, 
56.58; H, 8.93 

Reaction of 1,2:5,6-di-O-isopropylidene-a -D-ribo-hexo- 
furanos-3-ulose (3) with acetone. To a solution of compound 
317 (lg, 3.6 mmol) in acetone (20 mL) K2CO3 (0.83 g) and 
water (5 mL) were added. The reaction mixture was boiled 
under reflux for 4 h and then concentrated to dryness under 
reduced pressure. The residue thus obtained was treated with 
chloroform (20 mL), washed with water (3 x 20 mL>, and dried 
over anhydrous sodium sulphate. The solvent was evaporated 
to give a syrup which was purified by preparative TLC using 
ethyl acetate-hexane (1:l) as the eluent. The plates were 
developed three times. The Easter moving band (Rf= 0.4) gave 
3-C-Acetonyl-1,2 : 5,6-di-O-isoptopylidene- a-D-allo-furanose 
(4). (0.170 g, 15% yield) as a syrup;[aID + 66O (c 1, CHC13); 
IR (Film) 3400 (OH), 1700 cm" (ketone C=O>; 'H NMR (CDC13, 
200 MHz) 6 1.35 (s, 3H, 1,2-0-isopropylidene =-Me), 1.38, 
1.46 (29, 6H, 5.6-di-O-isopropylidene-Me), 1.58 (s, 3H, 1,2- 
0-isopropylidene &-Me), 2.30 (s, 3H, CH3CO), 2.38 (d, IH, 
J1ta,lib= 15.1 Hz, H-l'a), 3.11 (d, lH, H-l'b), 3.15 (bs, lH, 
3-0H), 3.80 (d, lH, J4,5 = 4 Hz, H-4), 3.90-4.12 (m, 3H, H-5, 
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H-6), 4.59 (d, lH, J1,2 = 2 Hz, H-21, 5-74 (d, 1H, H-1); z/z: 
316 (M', 2x1, 301 (M+-15, 50). 

Anal. Calcd for C15H2407: C, 56.96; H, 7.59. Found: C, 
56.70; H, 7.70. 

The slower moving band (Rf = 0.1) gave a (4:l) mixture of 
6 and 5 as a syrup (0.56 g, 56%). Spectroscopic data of 3-C- 
Acetonyl-5-deoxy-1,2-O-isopropropy1idene- c1 -D-erythrohex-4-eno- 
furanose (6): IR (Nujol) 3470 (OH), 1700 (ketone C=O>, 1650 
cm'l (C-iC-0); 'H NMR (CDC13, 90 MHz) 61.40, 1.47 (2s, 6H, 
isopropylidene), 2.23 ( s ,  3H, 3'-CH3), 2.63, 2.90 (AB system, 
2 H, Jlia,lib= 15 Hz, H-l'a, H-l'b), 4.20 (d, 2H, J5,6= 7 
Hz, H-6), 4.63 (d, 1H, 51,~- 3.5 Hz, H-21, 4-96 (t, 1H, H-5), 
5.98 (d, lH, H-1). 

When the workup was not carried out rapidly the slower 
moving band (Rf = 0.1) gave (lR, 3R, 7R, 8S, 10R)-perhydro-8- 
hydroxy-5,5,10-trimethyl-2,4,6,ll,l4-pentaoxatetracyclo-~8,3, 
1,0198,03,7] tetradecane 5 (0.56 g, 56%) as the only product 
as a white foam: [ a l D  - 146" ( 2  1, CHC13); IR (Nujol) 3450 
cm-' (OH); 'H NMR (CDC13, 200 MHz) 6 1,41 ( s ,  3H, 3'-CH3), 
1.47 ( s ,  3H, isopropylidene =-Me), 1.59 ( s ,  3H, isopropyl- 
idene &-Me), 1.91 (ddd, 1H, J5e,6e= 0.8, J5e,6a= 4.1, 

12.1 Hz, H-5a), 2.35 (d, 1H, J 1 1 ~ , 1 1 b =  14.6 Hz, H-l'a), 
2.44 (d, ZH, H-l'b), 3.37 (9 ,  lH, 3-OH), 4.00 (ddd, lH, 
J6a,6e= 11.6 Hz, H-6e), 4.38 (dt, lH, H-6a), 4.52 (d, 1H, 
J1,2 = 4.0 Hz, H-2), 6.03 ( d ,  lH, H-1); ; / z :  259 (M++ 1, 
l o % ) ,  258 (M', l ) ,  257 (61, 243 ( 2 ) ,  241 (181, 201 (3), 200 

(2.51, 185 (7), 183 (26). 
Anal. Calcd for C12H1806: C, 55.81; H, 6.98. Found: C, 

55.82; H, 6.82. 
Nuclear Overhauser effect experiments. - 'H NMR steady- 

state NOE difference spectroscopy experiments were carried 
out on compounds 2, 4 and 5 with a Brucker AM 200 

spectrometer operating in the pulse mode. The standard 
Btucker microprogram library was used to perform sequential 
multiplet line i r r a d i a t i ~ n , ~ ~  Each irradiation multiplet 
frequency was cycled 20 times before acquisition. A total 
irradiation time o f  2s and an acquisition time of 2s was 
used. Solutions (CDC13+Me4Si) were measured at 3OoC and a 90" 
read pulse was used in all cases. The coupling power was 

J5e,5a= 12.4 Hz, H-5e), 2.17 (dt, 1H, J5a,6e= 6.7, Jcja,6a' 
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3-C-BRANCHED-CHAIN SUGARS 403 - 

adjusted in order to obtain maximum saturation (80-90%) 
compatible with minimun frequency spillover to neighbouring 
multiplets. FID were weighted with a 2 Hz exponential line- 
broadening factor, substracted and Fourier transformed. NOE 
values were calculated from integrals of the difference and 
control ir'radiation spectra. 
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